Stress Impact Checkup for Women near me in Kalyan
Understanding Stress Impact Checkup for Women in Kalyan
What is Stress Impact Checkup for Women in Kalyan?
Available at an affordable price with Tata 1mg labs in Kalyan, the Stress Impact Checkup for Women is a comprehensive health assessment tailored to evaluate how stress affects various physiological functions and overall well-being in women. This checkup includes a range of blood tests such as vitamin B12 and vitamin D (25-hydroxy) test, complete blood count (CBC) and erythrocyte sedimentation rate (ESR) tests, diabetes screening (HbA1C and fasting blood sugar), cortisol test (morning sample), lipid profile, cardiac risk markers test, hormone tests such as follicle stimulating hormone (FSH), luteinizing hormone (LH) and prolactin tests, and thyroid profile (T3, T4, TSH) to assess various metabolic, hormonal, and organ functions, aiming to identify stress-related health concerns in women
Few special preparations need to be considered before undertaking the Stress Impact Checkup for Women. You are required to submit all the samples that are a part of this package during the sample collection itself. It is noteworthy that the Stress Impact Checkup for Women test is usually conducted in the morning for accurate test results.
What does Stress Impact Checkup for Women measure?
Contains 46 testsThe stress impact checkup for women includes a comprehensive assessment of various health markers to understand how stress affects the body. It includes include vitamin B12 and vitamin D (25-hydroxy) test, complete blood count (CBC) and erythrocyte sedimentation rate (ESR) tests, diabetes screening (HbA1C and fasting blood sugar), cortisol test (morning sample), lipid profile, cardiac risk markers, hormones such as follicle stimulating hormone (FSH), luteinizing hormone (LH) and prolactin tests, and thyroid profile (T3, T4, TSH). These tests provide a holistic view of how stress impacts on metabolic, hormonal, and overall health, guiding effective stress management.
By identifying potential problems early and providing personalized stress management strategies, the Stress Impact Checkup for Women supports overall well-being and helps women build long-term health and resilience.
Vitamin B12
The Vitamin B12 test measures your vitamin B12 levels. Vitamin B12 is essential for various health aspects, such as maintaining a healthy nervous system, making red blood cells, and creating the genetic material of our cells. Low vitamin B12 levels are more likely to occur in older adults, children, vegans, vegetarians, people with diabetes, individuals who underwent gastric bypass surgery, women who are breastfeeding, and in conditions that impact absorption of this vitamin, like Crohn’s disease. Higher vitamin B12 levels seen in pateint on vitamin suplement does not need treatment as excessive vitamin B12 is usually removed through the urine. However, some conditions, such as liver diseases and myeloproliferative disorders, can cause an increase in vitamin B12 levels, thereby affecting blood cell production.
Know more about Vitamin B12
ESR (Erythrocyte Sedimentation Rate)
An ESR test measures the rate at which red blood cells (erythrocytes) settle (sediment) in one hour at the bottom of a tube that contains a blood sample.
When there is inflammation in the body, certain proteins, mainly fibrinogen, increase in the blood. This increased amount of fibrinogen causes the red blood cells to form a stack (rouleaux formation) that settles quickly due to its high density, leading to an increase in the ESR.
An ESR test is a non-specific measure of inflammation and can be affected by conditions other than inflammation. This test cannot identify the exact location of the inflammation in your body or what is causing it. Hence, an ESR test is usually performed along with a few other tests to identify or treat possible health concerns.
Know more about ESR (Erythrocyte Sedimentation Rate)
Diabetes Screening (HbA1C & Fasting Sugar)
The Diabetes Screening (HbA1C & Fasting Sugar) test includes a glycosylated hemoglobin test and a glucose-fasting blood test. The glycosylated hemoglobin test measures the percentage of glycosylated hemoglobin in the blood, while a glucose-fasting blood test measures the glucose level during fasting. Glucose is the main form of sugar utilized by the body to release energy; it is absorbed by the intestine and distributed to all organs through blood. These tests help your doctor to monitor your blood sugar levels and manage your diabetes well.
Know more about Diabetes Screening (HbA1C & Fasting Sugar)
HbA1c (Hemoglobin A1c)
An HbA1c (Hemoglobin A1c) test precisely measures the percentage of sugar-coated or glycated hemoglobin in your blood. The test results represent the proportion of hemoglobin in your blood that has been glycated.
Hemoglobin, a vital protein found in red blood cells, is responsible for transporting oxygen throughout the body. Hemoglobin A is the most abundant form of hemoglobin, and when blood sugar levels increase, a higher proportion of hemoglobin A becomes glycated. As red blood cells have a lifespan of approximately 120 days, the sugar molecules remain attached to the hemoglobin for the duration of the cell's life. Consequently, the HbA1c test offers insight into your average blood sugar levels over the past 8 to 12 weeks.
FBS (Fasting Blood Sugar)
A fasting blood sugar test measures the glucose level in the body under overnight fasting conditions. Glucose serves as the body's energy currency and is broken down through metabolism to produce energy. Hormones and enzymes produced by the liver and pancreas control this process. The hormone insulin, produced by the pancreas, regulates blood glucose levels. When these levels are high, such as after a meal, insulin is secreted to transport glucose into cells for energy production. Elevated glucose levels in the body after fasting may indicate a risk of developing prediabetes or diabetes, which can be of two types- Type 1, caused by little or no insulin production, and Type 2, caused by insulin resistance or decreased insulin production.
CBC (Complete Blood Count)
The CBC (Complete Blood Count) test evaluates red blood cells (RBCs), white blood cells (WBCs}, and platelets. Each of these blood cells performs essential functions–RBCs carry oxygen from your lungs to the various body parts, WBCs help fight infections and other diseases, and platelets help your blood to clot–so determining their levels can provide significant health information. A CBC test also determines the hemoglobin level, a protein in RBC that carries oxygen from the lungs to the rest of your body. Evaluating all these components together can provide important information about your overall health.
Know more about CBC (Complete Blood Count)
Hb (Hemoglobin)
An Hb (Hemoglobin) test measures the concentration of hemoglobin protein in your blood. Hemoglobin is made up of iron and globulin proteins. It is an essential part of RBCs and is critical for oxygen transfer from the lungs to all body tissues. Most blood cells, including RBCs, are produced regularly in your bone marrow. The Hb test is a fundamental part of a complete blood count (CBC) and is used to monitor blood health, diagnose various blood disorders, and assess your response to treatments if needed.
Platelet Count
The Platelet Count test measures the average number of platelets in the blood. Platelets are disk-shaped tiny cells originating from large cells known as megakaryocytes, which are found in the bone marrow. After the platelets are formed, they are released into the blood circulation. Their average life span is 7-10 days.
Platelets help stop the bleeding, whenever there is an injury or trauma to a tissue or blood vessel, by adhering and accumulating at the injury site and releasing chemical compounds that stimulate the gathering of more platelets. A loose platelet plug is formed at the site of injury and this process is known as primary hemostasis. These activated platelets support the coagulation pathway that involves a series of steps, including the sequential activation of clotting factors; this process is known as secondary hemostasis. After this step, there is a formation of fibrin strands that form a mesh incorporated into and around the platelet plug. This mesh strengthens and stabilizes the blood clot so that it remains in place until the injury heals. After healing, other factors come into play and break the clot down so that it gets removed. In case the platelets are not sufficient in number or not functioning properly, a stable clot might not form. These unstable clots can result in an increased risk of excessive bleeding.
Total Leukocyte Count
The Total Leukocyte Count test measures the numbers of all types of leukocytes, namely neutrophil, lymphocyte, monocyte, eosinophil, and basophil, in your blood. Leukocytes or WBCs are an essential part of our immune system. These cells are produced in the bone marrow and defend the body against infections and diseases. Each type of WBC plays a unique role to protect against infections and is present in different numbers.
Hematocrit
The Hematocrit test measures the proportion of red blood cells (RBCs) in your blood as a percentage of the total blood volume. It is a crucial part of a complete blood count (CBC) and helps in assessing your blood health. RBCs are responsible for carrying oxygen from the lungs to different parts of the body. The hematocrit test provides valuable information about your blood's oxygen-carrying capacity.
Higher-than-normal amounts of RBCs produced by the bone marrow can cause the hematocrit to increase, leading to increased blood density and slow blood flow. On the other hand, lower-than-normal hematocrit can be caused by low production of RBCs, reduced lifespan of RBCs in circulation, or excessive bleeding, leading to a reduced amount of oxygen being transported by RBCs. Monitoring your hematocrit levels is essential for diagnosing and managing various blood-related disorders.
Mean Corpuscular Volume
The Mean Corpuscular Volume test measures the average size of your red blood cells, which carry oxygen through your body. This test tells whether your RBCs are of average size and volume or whether they are bigger or smaller.
Mean Corpuscular Hemoglobin
An MCH test measures the average amount of hemoglobin in a single red blood cell (RBC). Hemoglobin is an iron-containing protein in RBCs, and its major function is to transport oxygen from the lungs to all body parts. This test provides information about how much oxygen is being delivered to the body by a certain number of RBCs.
Mean Corpuscular Hemoglobin Concentration
An MCHC test measures the average amount of hemoglobin in a given volume of RBCs. MCHC is calculated by dividing the amount of hemoglobin by hematocrit (volume of blood made up of RBCs) and then multiplying it by 100.
Mean Platelet Volume
An MPV test measures the average size of the platelets in your blood. Platelets are disk-shaped tiny cells originating from large cells known as megakaryocytes, which are found in the bone marrow. After the platelets are formed, they are released into the blood circulation. Their average life span is 7-10 days.
Platelets help stop bleeding whenever there is an injury or trauma to a tissue or blood vessel by adhering and accumulating at the injury site, and by releasing chemical compounds that stimulate the gathering of more platelets. After these steps, a loose platelet plug is formed at the site of injury, and this process is known as primary hemostasis. These activated platelets support the coagulation pathway that involves a series of steps including the sequential activation of clotting factors; this process is known as secondary hemostasis. After this, there is a formation of fibrin strands that form a mesh incorporated into and around the platelet plug. This mesh strengthens and stabilizes the blood clot so that it remains in place until the injury heals. After healing, other factors come into play and break the clot down so that it gets removed. In case the platelets are not sufficient in number or are not functioning properly, a stable clot might not form. These unstable clots can result in an increased risk of excessive bleeding.
PDW
The PDW test reflects variability in platelet size, and is considered a marker of platelet function and activation (clot formation in case of an injury). This marker can give you additional information about your platelets and the cause of a high or low platelet count. Larger platelets are usually younger platelets that have been recently released from the bone marrow, while smaller platelets may be older and have been in circulation for a few days. Higher PDW values reflect a larger range of platelet size, which may result from increased activation, destruction and consumption of platelets.
RDW CV
The RDW CV test which is part of red cell indices, helps identify characteristics of red blood cells. RDW (red cell distribution width) measures the variations in the sizes of red blood cells, indicating how much they differ from each other in a blood sample. RDW is expressed as RDW-CV, a coefficient of variation. A higher RDW may suggest more variation in red cell sizes, while a lower RDW indicates more uniform red cell sizes.
Differential Leukocyte Count
- Differential Basophil Count
- Differential Neutrophil Count
- Differential Lymphocyte Count
- Differential Monocyte Count
- Differential Eosinophil Count
There are five types of WBCs: neutrophils, lymphocytes, monocytes, eosinophils, and basophils. A Differential Leukocyte Count test measures the percentage of each type of WBC in the blood. Leukocytes or WBCs are produced in the bone marrow and defend the body against infections and diseases. Each type of WBC plays a unique role to protect against infections and is present in different numbers.
This further contains
Red Blood Cell Count
The Red Blood Cell Count test measures the total number of red blood cells in your blood. RBCs are the most abundant cells in the blood with an average lifespan of 120 days. These cells are produced in the bone marrow and destroyed in the spleen or liver. Their primary function is to help carry oxygen from the lungs to different body parts. The normal range of RBC count can vary depending on age, gender, and the equipment and methods used for testing.
Absolute Leucocyte Count
- Absolute Eosinophil Count
- Absolute Neutrophil Count
- Absolute Basophil Count
- Absolute Lymphocyte Count
- Absolute Monocyte Count
The Absolute Leucocyte Count test measures the total number of white blood cells (leucocytes) in the given volume of blood. It examines different types of white blood cells such as neutrophils, lymphocytes, monocytes, basophils and eosinophils. These cells tell about the status of the immune system and its ability to fight off infections and other conditions like inflammation, allergies, bone marrow disorders etc.
This further contains
Cortisol, Serum (Morning Sample)
The Cortisol, Serum (Morning Sample) test measures the levels of cortisol hormone in the blood. Cortisol is a vital hormone produced by the adrenal glands in response to stress and plays an important role in various bodily functions such as metabolism, immune response and body’s stress response system.
The Cortisol, Serum (Morning Sample) test is conducted during the morning because cortisol levels fluctuate throughout the day, typically peaking in the early morning and gradually declining throughout the day and then into the evening. By measuring the cortisol levels in the morning, the doctors can assess the body’s natural rhythm (circadian rhythm) and evaluate how well the adrenal glands and pituitary glands are working. Deranged cortisol levels can indicate conditions such as adrenal insufficiency (Addison’s disease), cortisol excess (Cushing’s syndrome) or other disorders affecting these glands. Additionally, this test helps diagnose and monitor conditions related to stress, sleep disorders, metabolism and overall hormone balance.
Know more about Cortisol, Serum (Morning Sample)
Lipid Profile
The Lipid Profile assesses the level of specific fat molecules called lipids in the blood and helps determine the risk of heart ailments. This test determines the amount of different types of lipids, including total cholesterol, low-density lipoprotein (LDL) cholesterol, very-low-density lipoprotein (VLDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and triglycerides. Lipids play a pivotal role in the functioning of the body. They are crucial components of the cell membranes and hormones, provide cushioning, and are a storehouse of energy. Any alterations in the lipid levels may lead to potential heart ailments, making their monitoring crucial.
Know more about Lipid Profile
Triglycerides
The Triglycerides test measures the amount of triglycerides in the blood and helps evaluate your risk of developing cardiovascular diseases. Triglycerides are a type of fat (lipid) that your body uses as a source of energy. When you consume more calories than your body needs, the excess calories are converted into triglycerides and stored in fat cells for later use. High triglyceride levels can contribute to the hardening and narrowing of arteries, increasing the risk of heart attack, stroke, and other related conditions.
Cholesterol - Total
The Cholesterol - Total test measures the total amount of cholesterol (fats) in your blood. Cholesterol is mainly synthesized in the liver and partially in the intestines. It acts as a building block for cell membranes, is a precursor to vital hormones, and helps produce bile acids that help digest fats. Cholesterol is transported through the blood as lipoproteins: low-density lipoprotein (LDL) and high-density lipoprotein (HDL). An optimal amount of these proteins is necessary for proper body functioning.
Cholesterol - HDL
The Cholesterol - HDL test measures the concentration of high-density lipoprotein (HDL) cholesterol in the blood. HDL cholesterol plays a crucial role in maintaining cardiovascular health, as it helps transport excess low-density lipoprotein (LDL) cholesterol from the bloodstream back to the liver for excretion. This process prevents plaque buildup on the blood vessel walls, which can cause them to become narrow and less flexible. Higher HDL cholesterol levels are generally associated with a lower risk of heart problems, such as heart attacks and strokes. By measuring HDL cholesterol levels, your doctor can assess your risk of developing cardiovascular diseases and recommend appropriate preventive or treatment strategies, including lifestyle modifications and medications.
Very Low Density Lipoprotein
The Very Low Density Lipoprotein test measures the concentration of very-low-density lipoprotein (VLDL) cholesterol in the blood. VLDL cholesterol plays a vital role in the body's metabolic processes. It is produced by the liver and is used to transport triglycerides, a type of fat, from the liver to various tissues throughout the body, where they are either utilized for energy or stored for later use. Though VLDL cholesterol is essential for the body's normal functioning, it is harmful if present in excess amounts. By measuring VLDL cholesterol levels, your doctor can assess your risk of developing cardiovascular diseases and recommend appropriate preventive or treatment strategies.
Total Cholesterol/HDL Cholesterol Ratio
The Total Cholesterol/HDL Cholesterol Ratio test measures the ratio of total cholesterol and high-density lipoprotein (HDL)/good cholesterol in your blood which is a significant indicator of cardiovascular health. This ratio is calculated by dividing the total cholesterol by the HDL number. A high ratio indicates a higher amount of 'bad' cholesterol relative to 'good' cholesterol, implying a higher risk of developing heart disease. Conversely, a lower ratio implies a higher amount of 'good' cholesterol relative to 'bad' cholesterol, indicating a lower risk.
LDL/HDL Ratio
An LDL/HDL Ratio test measures the ratio of low-density lipoproteins (LDL) to high-density lipoproteins (HDL) in your blood. These two types of lipoproteins carry cholesterol throughout the body. LDL, often referred to as the 'bad' cholesterol, carries cholesterol to the cells that need it. However, if there is too much LDL cholesterol in the blood, it can combine with other substances and form plaque in the arteries, leading to cardiovascular diseases. On the other hand, HDL, often referred to as the 'good' cholesterol, helps remove other forms of cholesterol, including LDL, from the bloodstream. It transports cholesterol back to the liver, where it is broken down and eliminated from the body, thus reducing the risk of cholesterol buildup and heart disease. The LDL/HDL ratio is a significant indicator of cardiovascular health. A high ratio indicates a higher amount of 'bad' cholesterol relative to 'good' cholesterol, implying a higher risk of developing heart disease. Conversely, a lower ratio implies a higher amount of 'good' cholesterol relative to 'bad' cholesterol, indicating a lower risk.
Non HDL Cholesterol
The Non HDL Cholesterol test looks for the “bad” cholesterol particles that are likely to contribute to heart problems. These bad particles include LDL (low-density lipoprotein) cholesterol, VLDL (very-low-density lipoprotein) cholesterol, and remnants of other cholesterol-carrying molecules. Cholesterol is a waxy substance that circulates in your bloodstream and is essential for various bodily functions. However, too much of “bad” types of cholesterol can build up in your arteries and increase the risk of heart conditions. LDL and VLDL cholesterol particles are often referred to as the "bad" cholesterol because they can stick to the walls of your arteries and form plaque, narrowing the arteries and restricting blood flow to your heart. By measuring non-HDL cholesterol, your doctor can assess your risk of heart disease and determine if any interventions or lifestyle changes are needed to protect your heart.
Cholesterol - LDL
The Cholesterol - LDL test measures the concentration of low-density lipoprotein (LDL) cholesterol in the blood. LDL cholesterol plays an important role in your body. It carries cholesterol from your liver to other parts of the body where it's needed for things like building cell walls and making hormones. However, it is often referred to as "bad" cholesterol because when present in excess in your blood, it can stick to your blood vessel walls leading to the formation of plaque, making them narrow and less flexible. When this happens, it's harder for the blood to flow, which can lead to heart problems, like heart attacks and strokes. By measuring LDL cholesterol levels, your doctor can assess your risk of developing cardiovascular diseases and can recommend appropriate preventive or treatment strategies.
Vitamin D (25-Hydroxy)
The Vitamin D (25-Hydroxy) test measures the levels of vitamin D in the body. It is an essential nutrient that can be synthesized in the body upon healthy exposure to sunlight or absorbed from dietary sources. It majorly exists in two forms: Vitamin D2 (ergocalciferol) and Vitamin D3 (cholecalciferol). Vitamin D2 is present in plants, such as yeast or mushrooms, and is available as a supplement in fortified foods, and vitamin D3 is found in foods like cheese, green vegetables, mushrooms, egg yolks, and fatty fish.
Both forms of vitamin D (D2 and D3) need to undergo some chemical changes before being available for use in the body. These chemical changes take place in the liver or kidneys.The levels of 25-hydroxy Vitamin D in blood is considered the best parameter to assess vitamin D status of the body. A Vitamin D (25-Hydroxy) measures the level of Total 25-OH vitamin D (D2+D3) , but it does not differentiate between the two forms as it is the major form of vitamin D that circulates in the blood.
Know more about Vitamin D (25-Hydroxy)
Cardiac Risk Markers
A Cardiac Risk Markers test measures the specific indicators called cardiac markers in the blood that can signify potential risks to heart health or cardiovascular problems. These markers provide valuable insights into an individual's risk of developing heart disease or experiencing cardiovascular events.
A Cardiac Risk Markers test includes a highly sensitive C-reactive protein test which helps indicate heart disease by detecting inflammation within the body, particularly in the blood vessels. Also, it includes testing for apolipoproteins and lipoproteins which are the essential components involved in transporting lipids (fats) through the blood. They play a vital role in the metabolism, transport, and regulation of cholesterol and other fats in the body. Their involvement is key in indicating potential heart problems.
Know more about Cardiac Risk Markers
Lipoprotein A
The Lipoprotein A test measures the amount of lipoprotein A (Lp-A) particles in your blood. Lipoprotein A is a mixture of Low-density lipoprotein (LDL) and a protein called apolipoprotein a. Lp-A levels are largely determined by genetics. Lp-A levels are not significantly affected by diet, exercise, or lifestyle changes, unlike other types of cholesterol. That is why testing for Lp-A is essential, particularly for individuals with a strong family history of cardiovascular (heart or blood vessel) disease as it is considered an independent risk factor for heart attack and stroke. This test can help identify individuals who are at high risk, enabling early intervention to prevent future complications.
hsCRP (High Sensitive CRP)
An hsCRP (High Sensitive CRP) test is a state-of-the-art biochemical marker to predict potential risks of future diseases. This test is more sensitive than the standard CRP test and can also detect lower CRP levels in the blood. Its accuracy in predicting cardiovascular issues, autoimmune disorders, and other health issues makes it an excellent test to detect asymptomatic conditions with limited diagnosis.
Apolipoprotein B/A1 Ratio
An Apolipoprotein B/A1 Ratio test helps predict the risk of cardiovascular disease (CVD) in individuals at high risk, such as those who are obese, have a family history of heart disease, have high cholesterol, or have had similar health issues in the past. Apolipoprotein A1 is the primary protein associated with HDL cholesterol (good cholesterol), and its increased concentrations are associated with a reduced risk of cardiovascular disease. Apolipoprotein B is the primary protein associated with LDL cholesterol (bad cholesterol) and other lipid molecules. An increase in LDL cholesterol is associated with increased risk of cardiovascular disease. Therefore, an Apolipoprotein B/A1 Ratio test is a key marker of developing potential cardiovascular disease (CVD) or heart-related ailments.
Apolipoprotein - B
The Apolipoprotein B test is used to evaluate the level of Apolipoprotein B in your blood. It is a type of protein that aids in the transportation of fat and cholesterol throughout the body. Apo B serves as the primary protein component of lipoproteins such as very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), and chylomicrons. It binds to LDL or “bad” cholesterol, causing plaque accumulation in the blood vessels. This can lead to the development and progression of cardiovascular disease that can be life-threatening if left untreated.
Apolipoprotein - A1
An Apolipoprotein - A1 test helps check the levels of Apolipoprotein A1 in your blood. Apolipoprotein A1 is the major protein for the high-density lipid (HDL), also known as “good” cholesterol and helps in its transport. Apo A1 helps the HDL to take up cholesterol from the tissues and is bound by receptors in the liver where the cholesterol is destroyed. Assessing the levels of Apolipoprotein A1 directly reflects the high-density lipoprotein levels. In this way, apolipoprotein A can help to lower your risk for cardiovascular disease.
FSH, LH & Prolactin
An FSH, LH & Prolactin test measures levels of three hormones, namely follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prolactin, that are critical for reproductive function in males and females. This hormonal test is conducted to address various issues associated with the process of ovulation, fertility, and reproductive organs.
The levels of these hormones are typically low at younger ages, but as adolescence approaches, the brain starts producing GnRH. GnRH is responsible for initiating the changes in puberty and signaling the pituitary gland to release FSH and LH into your blood.
Know more about FSH, LH & Prolactin
Serum Prolactin
The Serum Prolactin test measures the levels of prolactin hormone in a person’s body. During pregnancy, prolactin, estrogen, and progesterone hormones stimulate breast milk development. Following childbirth, prolactin helps initiate and maintain the breast milk supply. If a woman does not breastfeed, her prolactin concentration will soon drop back to pre-pregnancy levels.
Besides pregnancy, the most common cause of elevated prolactin concentration is prolactinoma, a prolactin-producing tumor of the pituitary gland. Prolactinomas are the most common type of pituitary tumor and are usually benign (non-cancerous). They develop more frequently in women but are also found in men.
If the pituitary gland and/or the tumor enlarge significantly, it can put pressure on the optic nerve, causing headaches and visual disturbances, and can interfere with the other hormones that the pituitary gland produces.
Luteinising Hormone
The Luteinising Hormone test determines the level of luteinizing hormone that promotes the functioning of the gonads, i.e., testes in men and ovaries in women. LH is produced by the pituitary gland, a pea-sized gland situated at the base of the brain. The production and release of LH are controlled by a system known as the hypothalamic-pituitary-gonadal axis. A hormone called GnRH is released from the hypothalamus of the brain and binds to the cell receptors in the anterior pituitary gland, which in turn prompts the synthesis and release of luteinizing hormone. LH then travels across the blood and attaches to its target cells in the testes in men and ovaries in women to facilitate optimal sexual and reproductive activities.
Follicle Stimulating Hormone
The Follicle Stimulating Hormone test measures the level of FSH in your body. FSH is produced and subsequently released into the blood by the pituitary gland. Its production is controlled by a feedback mechanism involving a hormone situated in the hypothalamus in the brain. The released FSH travels through your blood and then attaches to receptors in the ovaries and testes. It exerts functional effects on the reproductive organs, such as sexual development, puberty, and maturation. FSH levels vary throughout the menstrual cycle in response to estradiol and progesterone. Any disruption or issue in this feedback mechanism can prevent the normal function of the testicles or ovaries. Thus, determining its level provides crucial information regarding your health.
Thyroid Profile Total (T3, T4 & TSH)
The Thyroid Profile Total (T3, T4 & TSH) measures the levels of three hormones in the blood, namely triiodothyronine hormone (T3) total, thyroxine hormone (T4) total, and thyroid-stimulating hormone (TSH). T3 and T4 are thyroid hormones that help regulate metabolism and energy levels in the body. On the other hand, TSH is produced by the pituitary gland and stimulates the thyroid gland to produce T3 and T4 hormones. The serum levels of the thyroid hormones and TSH have an inverse relationship, i.e., low T4 (as observed in hypothyroidism) and high T4 (as seen in hyperthyroidism) levels are associated with high and low TSH levels, respectively.
Know more about Thyroid Profile Total (T3, T4 & TSH)
Triiodothyronine Total
The Triiodothyronine Total test measures triiodothyronine, also known as T3, hormone that is produced by the thyroid gland. T3 hormone plays an important role in regulating the body's metabolism, energy levels, and growth & development. It exists in the blood in two forms: free T3 and bound T3. Free T3 is not bound to proteins in the blood and is the active form of T3. Whereas, bound T3 is bound to proteins, such as albumin and thyroid hormone binding globulin (THBG), which prevent it from entering the body tissues.
Thyroxine - Total
The Thyroxine - Total test measures both the bound and unbound/free form of thyroxine (T4) hormone in the blood. T4 exists in the blood in two forms: bound (attached to proteins) and free (not attached to proteins). Most of the T4 circulating in the blood is bound to proteins and only a small part is free. It is necessary to maintain a fine balance of these forms to ensure the proper functioning of the body.
TSH (Thyroid Stimulating Hormone) Ultrasensitive
The TSH (Thyroid Stimulating Hormone) Ultrasensitive test measures the levels of TSH hormone in the blood. TSH is produced by the pituitary gland located in the brain. Its function is to stimulate and regulate the functioning of the thyroid gland. It signals the thyroid gland to increase or decrease the production of thyroid hormones T3 and T4 (essential for regulating our body’s metabolism, temperature, heart rate, and growth) when their levels are low or high, respectively. Therefore, when the levels of T3 & T4 decrease, the pituitary gland is stimulated to release TSH. This high TSH level, in turn, stimulates the thyroid gland to release more thyroid hormones (T3 & T4); the vice-versa happens when the levels of thyroid hormones increase.